在线观看人与动牲交视频_夜夜高潮次次欢爽AV女_奇米在线视频观看_欧美精品七区_色悠久久综合网_少妇潮喷无码白浆水视频

上海非利加實業有限公司Logo

熱門詞: 進口電動溫度調節閥結構圖|進口電動溫度調節閥數據表進口電動高溫調節閥-德國進口電動高溫法蘭調節閥進口電動蒸汽調節閥-德國進口電動蒸汽調節閥

當前位置: 首頁 > 所有品牌 > Campbell Scientific
Campbell Scientific
Campbell Scientific Campbell Scientific

Campbell Scientific
美國Campbell Scientific Inc.(CSI)全球領先的數據采集產品供應商”
Campbell Scientific has been designing and manufacturing innovative measurement instrumentation since 1974.
CAMPBELL SCIENTIFIC, INC., was organized in 1974 by Eric and Evan Campbell with initial capital from themselves, six brothers, and their father, Sanford Campbell. Dr. Gaylon Campbell, a professor at Washington State University, provided direction and help on new product definition and conceptual development.


The first product marketed by CSI (1974) was the Model CA9 Path Averaging Laser Anemometer, which was developed for the U.S. Army, White Sands Missile Range, New Mexico. This instrument was patterned after a larger experimental version developed by the NOAA Wave Propagation Laboratory in Boulder, Colorado. About 60 CA9s were sold to military installations and other centers of atmospheric research.

The Model CR5 Digital Recorder was introduced in 1975. The CR5 was a portable, battery-powered datalogger of modular design using CMOS logic technology. To our knowledge, it was the first battery-operated system that could do time-averaged measurements from thermocouples, solar radiation sensors, and wind sensors requiring vector averaging. With 500 systems sold, the CR5 was well received by agricultural researchers interested in remote monitoring of wind speed/direction, temperatures, solar radiation, and other site-specific micrometeorological parameters.

By 1978, CSI had expanded to 20 employees and about $1 million in annual sales. The Model CR21 Micrologger was introduced the following year. Over 3600 CR21 systems were sold worldwide. The majority of units were used in weather station applications where low power consumption, reliability, on-site processing, and unattended operation are essential requirements.

The CR21 represented a significant reduction in cost for systems requiring a limited number of channels while providing a vast improvement in flexibility because of software. An additional improvement in power consumption allowed more than six months of continuous operation from eight alkaline D cells.

Several CR21s were sold with custom software for specific applications. The custom programs were added to the standard instruction set, allowing the new functions to be executed without sacrificing the flexibility of the standard system.

In 1981, CSI moved to its present location, into a solar-energy-efficient building located on the outskirts of Logan, Utah. The building was designed for optimum energy conservation, with a high level of natural lighting and an emphasis on keeping the cost at or below that of conventional buildings. A CR21 was used to control heating, ventilation, and air conditioning.

A significant technological achievement for CSI occurred with the introduction of the Model CR7 Measurement and Control System in January 1983. Initially, the CR7 design was developed to provide the channel expandability of the CR5 system with the software and generic sensor interface capability of the CR21. However, improvements in integrated circuits and new ideas in analog measurement put the CR7 considerably beyond previous field measurement technology, and in some categories, surpassed the best laboratory equipment available.

Several of the 180 CR7 systems delivered in the first year were used in applications new to CSI. These included monitoring the performance of experimental cars, geological structure stability in remote locations, and tumor temperatures during hyperthermia treatments.

Expansion of the more traditional agricultural research and meteorology markets continued, including systems for measurement of evaporation from weighing lysimeters, measurement and calculation of fluxes using covariance software, and measurement of soil water potential using peltier-cooled thermocouple psychrometers. Through 1994, 1,582 CR7 systems had been shipped.

The effort to transfer some of the CR7 capability to a lower cost, fully integrated system resulted in the development of the Model 21X Micrologger in 1984. At a cost slightly higher than the original CR21, the 21X in 1985 and 1986 was the highest quantity and highest dollar volume product at CSI. Through 1994, 12,256 21Xs were delivered. The 21X also found its way into new markets including oceanography (instrumented buoys) and automotive testing.

CSI has developed an RF modem to provide reliable two-way communication using VHF or UHF radios. This system was tested in the mountains east of Logan from December 1984 to March 1985. It was used with 21X Microloggers on Mount Logan Peak (9700 ft) and at Peter Sink where a low temperature of -70.5° F was recorded and transmitted.

The RF Modem is a key element in a system of 140 portable weather stations currently operated by the Atmospheric Sciences Laboratory at White Sands Missile Range in New Mexico. In 1988, a wind study was conducted where each station made measurements once per second, computing one minute averages. A central computer interrogated 30 stations via radio every 15 minutes for three weeks resulting in about 10 million values with 100% data recovery.

With new products and interfaces to products from other manufacturers, CSI now has the capability to transfer data using switched network phone lines, cellular phones, dedicated lines, VHF, UHF, and spread spectrum radios, meteor burst transmissions, and satellites. In 1987, CSI introduced the CR10 Measurement and Control Module. This quickly became the standard datalogger for most operational weather station applications. The CR10's unique package allows lower cost, better RFI/EMI shielding, and a tighter environmental seal. The CR10 also represented new technology in self-calibration of gain ratios to within 10 ppm over the full temperature range and a unique temperature compensated system clock. The ability of the CR10 to measure frequency of sinusoidal signals at analog inputs has allowed direct connection to vibrating wire pressure transducers. Through 1994, 27,370 CR10s were sold.

Continued emphasis on quality control has resulted in increased mean times between failures (MTBF) of CSI equipment. Based on records of datalogger repairs (3 year warranty period), current MTBF is more than 80 years for the 21X Micrologger, 160 years for the CR10, and more than 30 years for the CR7.

Another area of product emphasis has been directed at software tools to aid data reduction and system program documentation. This development has been centered on the IBM PC and subsequent models, and compatible computers. In 1993 a new software package for datalogger networks, called RTMS, was completed which supports multi-tasking real-time monitoring. The state of Oklahoma installed more than 120 remote sites with RF communication to a computer running RTMS and which feeds a data stream over a TCP/IP link to the mainframe computer at the State Climatology Office.

Through the 1980s, CSI worked with other researchers on the development of sensors for measuring heat and water vapor transfer from soil and crop surfaces using eddy covariance techniques. This requires a set of fast-response sensors for vertical wind, temperature, and water vapor. The effort included designing low cost sensors that could be transported easily and set up in the field to operate from batteries. To satisfy one of the requirements for this project, CSI designed and patented a fast response humidity sensor that measures absorption of ultraviolet light emitted from a krypton gas source tube.

From 1987 to 1991, engineers at CSI were involved in a project to monitor underground fuel storage tanks for leakage. This project resulted in a significant breakthrough of using the combination of ultrasonic transducer and digital signal processing means to detect changes in liquid level with submicron resolution. This technology was subsequently licensed to Marley Pump Company to augment their product line of petroleum distribution equipment.

CSI introduced products in 1991 to extend the utility of dataloggers to recording volumetric water content using time-domain reflectometry (TDR). These new products included probes, a multiplexer to connect multiple probes to a single reflectometer, and interface products to allow a CR10 datalogger to power up and communicate with a Tektronix Model 1502B Reflectometer. Working in conjunction with researchers who had developed computer models for determining volumetric water content from reflectometer readings, CSI implemented software in the datalogger to do the same, which now allows the automated, remote-site measurement and recording of such information.

In 1991, CSI introduced the BDR320 for hydrology applications. The BDR320 was designed for reliable, long-term, unattended monitoring in harsh environments with minimal power consumption. With four single-ended or two differential analog inputs and 17-bit resolution, the BDR320 precisely measured temperature, pressure, force, or position using common simple sensors. The device was ideally suited to water stage recording or well draw-down tests where precision measurements are needed from only one or two sensors. Through 1994, 1,410 BDR320s were sold.

In 1993, CSI sold its first Trace Gas Analyzer, a sophisticated instrument capable of measuring an absolute concentration of CH4 or N2O to parts per billion (10 Hz) and gradients to a resolution of parts per trillion (30 minute average).

In 1995 CSI shipped its fastest datalogger, the CR9000. With sampling rates up to 100 KHz and parallel processing capability, the CR9000 supports demanding applications in noise and vibration measurement and turbulence studies. CR9000 includes Windows-based PC support software for easy program generation of simple applications, and a powerful BASIC-like language for programming support of complex applications.

During the 1990's Campbell Scientific expanded its manufacturing facility. We upgraded assembly and technician work areas, automated assembly and testing equipment, purchased Computer Aided Design (CAD) equipment for mechanical and printed circuit board designs, and improved our computer-based Manufacturing Resource Planning (MRP) capability to improve product availability and manufacturing efficiency.

Internationally, we established a subsidiary in Australia in 1993 for manufacturing, marketing, and customer service in the South Pacific and Southeast Asia. Our subsidiary in the U.K., Campbell Scientific Limited (CSL), has been operating since 1985. CSL was established to combine the technology developed at CSI with sensors and peripheral equipment currently manufactured in the United Kingdom. They strive to provide products and support services to customers throughout the European Community at a reasonable cost. In 1996, Campbell Scientific, Ltd. moved into a new 17,000 sq. ft. facility custom built for their manufacturing, service, and support activities.

In 1996, Campbell Scientific began delivering the CR10X. The CR10X provided similar functionality as its predecessor, the CR10, but had expanded data storage, larger program capacity, non-volatile Flash memory, battery-backed RAM and clock, and an expanded instruction set. The CR10X was our first datalogger to use surface mount technology. Surface mount technology provides the following advantages over through-hole technology:

Smaller component sizes
Improved signal speed
Reduced RF emission
Shorter lead lengths and ciruit paths between components
Less handling of parts
Improved manufacturing automation
Other products introduced in 1996 included the CR500 datalogger, CSAT3 Sonic Anemometer, and the MetData1 Weather Station. The CR500 dataloggger was an inexpensive cousin to the CR10X. It included some of the CR10X's features such as non-volatile Flash memory and surface mount components but had fewer input channels. The CSAT3 Sonic Anemometer provides precision turbulence measurements with minimal flow distortion. It has a 10 cm vertical measurement path, operates in a pulsed acoustic mode, and withstands exposure to harsh weather conditions.

The MetData1 was a pre-configured weather station intended to ease field installation. All of its sensors are ordered with circular connectors that connect directly to the enclosure. The MetData1 bridges both the preconfigured world with ease of use, and custom weather stations by offering a variety of sensors and data retrieval options.

During this time period, there were many changes in our software. Most of our efforts involved switching from DOS-based to Windows-based software. We offered PCTour Tutorial Software, PC200W Starter Software, PC208W Datalogger Support Software, PC9000 Software, Visual Weather Weather Station Software, and RTDM. RTDM was developed by our European Affiliate, CSL.

The CR23X Micrologger was introduced in January 1998 as a direct replacement for the 21X. Like the 21X, the CR23X is a self-contained, low-power datalogger. The CR23X incorporated some of the CR10X features such as surface mount technology, non-volatile Flash memory, and battery-backed RAM and clock. Features unique to the CR23X include a 23-character-by-2-line alphanumeric display and a built-in optically isolated RS-232 port. The RS-232 port allows computers to be connected to the datalogger without using an SC32A interface.

Responding to the needs of our customers, we upgraded our CR500 to the CR510 in January of 1998. The CR510 included a battery backed clock, an additional final storage area, and the wind vector instruction. New dataloggers continued to roll out with the release of the CR5000 in 1999. A cross between a CR23X and a CR9000, the CR5000 was more portable than our CR9000's, but offered expanded channels over our CR23X. The CR5000 also is the first compact datalogger to feature our CRBasic programming language and table data storage as standard features.

Campbell Scientific released the CR200-series dataloggers in 2002. The CR200 series consisted of low-cost units that could be used as wireless sensors or as simple dataloggers. The CR205, CR210, and CR215 all contained on-board spread spectrum radios that supported different frequency ranges; the CR200 did not have a radio. The CR200 series was also the first datalogger to have a PakBus? operating system. For datalogger networks, the PakBus operating system improved upon traditional connection-based communications by putting data packets onto the network. PakBus networks have the distributed routing intelligence to continually evaluate links, optimizing delivery times and, in the case of delivery failure, allowing automatic switchover to a configured backup route.

 

The next generation of the CR9000, the CR9000X, began shipping in 2004. The CR9000X incorporated the new high speed CR9032 CPU module, which processes at least 25 times faster than its predecessor, the CR9031. In addition to the 180 MHz Hitachi processor, the CR9032 also features a 128 MB internal SDRAM, a built-in PC card slot, an RS-232 port, and a 10/100 BaseT Ethernet port.

Besides dataloggers, the beginning of the new century saw the development of data retrieval peripherals, sensors, and systems. Data retrieval peripherals developed during this time period included our SAT HDR GOES satellite transceiver, NL100 TCP/IP interface, RF400-series Spread Spectrum Radio transceivers, COM210 phone modem, COM310 Voice-synthesized modem, and MD485 RS-485 Multidrop Interface. New Sensors included our DMM600 Duff Moisture Meter and CS616 Reflectometer. New systems included our CSBUOYs for monitoring ponds, SSR100 for measuring water level, and our TDR100-based systems. Our affiliates had also produced several new products including the SDM-CVO4, SDM-CD16D, SDM-CAN, and SDM-IO16 developed by CSL and the CD294 DataView Display and the HydroSense? Water Content sensor developed by Campbell Scientific Australia.

In January of 2003, LoggerNet became our standard Datalogger Support Software package, replacing PC208W software. LoggerNet supported connection to a single datalogger, but was especially adept in applications that required telecommunications or scheduled data retrieval used in large datalogger networks. Other significant software packages include PConnect Palm/Handspring PDA Software (released in 2001), Pond View Aquaculture software (released in 2001), PConnectCE PocketPC PDA Software (released in 2002), and PC400 Mid-Level Datalogger Support Software (released in 2004).


 

關于我們客戶服務產品分類法律聲明
主站蜘蛛池模板: 开心色怡人综合网站_久久久久国产精品嫩草影院_狂野的爱在线观看_国产良家自拍_无套内射极品少妇chinese_欧美激情无码视频一二三_久久综合久中文字幕青草_性xxxx欧美 | 在线免费观看黄色片_四虎必出精品_久久夜色精品国产噜噜噜亚洲AV_97久久精品人妻人人搡人人玩_aaa视频_精品成人免费一区二区在线播放_第一福利初水视频导航_日韩中文字幕二区 | 久久精品视频在线免费观看_4438x成人网最大色成网站_久青草国产在线_a狠狠久久蜜臀婷色中文网_亚洲色图av在线播放_欧美久草在线_久久人妻无码AⅤ毛片A片麻豆_爱草视频在线 | www.四虎在线_我才12因啪啪就破了处怎么办_中文字幕高清免费日韩视频在线_国产猛男GAYB0Y1069麻豆_最新日韩精品_永久免费的hs网站_国产亚洲妇女在线视频_日日激情 | 亚洲精品国产精品国自产观看浪潮_成年人在线观看视频_欧美一级片毛片_国产又黄又猛又粗又爽的A片漫_日韩精品一区av_成人无码h真人在线网站_日本毛茸茸的丰满熟妇_国产精品黑丝 | av免费在线网址_国产成人片一区在线观看_久久久久免费看黄a毛片肥婆_色婷婷色综合激情国产日韩_在线欧美小视频_丁香少妇激情啪啪_午夜激情在线视频_美女和帅哥在床上 | 男女无套内射白将在线线国语_久久精品噜噜噜成人_国产片一区二区_91污视频_69午夜视频_国产精品一区二区三区四区在线观看_一级黄色播放_av在线无码专区一区 | 精品国产一区二区免费不卡_久久久久久久久久99_国产精品无码素人福利免费_国产三级生活片_国精一区二区_国产小福利_久久中文字幕无码专区_日韩精品国产精品 | 久草热久_无码任你躁久久久久久老妇_国产精品久久久久av_精品久久国产老人久久综合_国产成人久_精品一区二区久久久久久久网精_久久国产主播_日本一区二区欧美 | 白浆av导航_菲律宾一级片_牛夜精品久久久久久久99黑人_精品无码中文字幕在线_九色一区二区_aⅴ一区二区三区无卡无码_青草视频在线观看国产_欧美日韩在线观看成人 | 久久久精品一区_人人爽天天碰天天躁夜夜躁_亚洲精品网页_97一期涩涩97片久久久久久久_www亚洲一区_久久久精品无码中文字幕_爱草草视频_国产伦国产伦老熟300部 | 国产69精品久久99不卡的观看体验_一区二区视频网_精久久久久久久_综合激情六月_操操操操操操操_麻豆播放器_久久99久久精品视频_亚洲中文字幕成人无码 | 一本大道香蕉大在线中文_国产精品久久久久久妇_天天干天天爱天天_18禁美女黄网站色大片在线_98超碰人人_国产丝袜av一区二区三区性色_av毛片无码中文字幕不卡_一区二区三区产品免费精品久久75 | 高清精品一区二区三区_欧美一级做a爰片久久高潮_欧美成人视_亚洲同性同志一二三专区_人与野鲁交xxxⅹ网站_国产成人精品福利一区二区_最新日本中文字幕在线观看_国产精品综合不卡av 亚洲九九精品_国产不卡视频一区二区三区_久操视频免费看_热99久久精品_婷婷久久精品一区二区_日本免费人成在线观看_xxxx免费_国产成人一区二区三区在线视频 | 一区二区三区成人在线视频_欧美日韩久久一区_a在线免费观看视频_五月天黄色av_久久久精品国产免大香伊_99精品久久久久久久婷婷_一级特黄录像免费播放中文_久久99精品久久久久久动态图 | 91综合视频在线观看_免费人妻av无码专区_jlzzjlzz国产精品久久_狠狠躁夜夜躁人人爽天天古典_黑人与中国女一级毛片不卡_少妇的肉体aa片在线观看_亚洲国产精品一区在线观看_就要干就要操就要日 | 绯色av蜜臀一区二区中文字幕_操操操网站_亚洲宗人网_日韩高清免费a级毛片_国产成人香蕉久久久久_亚洲综合久久网_少妇一边呻吟一边说使劲视频_av网站观看 | 99久久精品国产导航_黄色毛片视频免费观看中文_精品熟女少妇AV免费观看_caoporn超碰91_国产老肥熟_亚洲欧美中文字幕日韩一区二区_国产人妻大战黑人第1集_人妻熟妇AV水蜜桃一区二区三区 | 久久99精品久久久66_毛片性做爰aaaaa_中国产一级毛片_日日操夜夜添_九九热线视频精品99_日韩视频一级_黄色国产在线_日本xxxx10 | 俺也去俺来也www色官网_国产精品久久久久激情影院_小荡货好紧好爽奶头大视频_亚洲免费精品一区_欧美群妇大交乱视_国产一区视频播放_一区二区三区四区欧美日韩_亚洲欧美日韩系列中文字幕 | 高潮喷水的毛片_日本在线高清视频_久久精品综合网_日本区一区二_欧美国产综合一区二区_午夜福利国产成人无码_欧美国产亚洲精品_天天操婷婷 | 欧美疯狂xxxxbbbb喷潮_亚洲成年人在线观看_男女啪啪a级毛片_国产中文1_91在线视频观看免费_欧美精品一_国产精品一区二区_中文字幕佐山爱一区二区免费 | 驯服人妻hd中字日本_人妻夜夜爽天天爽三区麻豆AV网站_欧美精品日日操_日本三级大全_大香伊在人线免97_欧美视频网站www色_中国一级片网站_在线播放av更多 | 人牲a级牲交_视频在线亚洲_亚洲精品无码午夜福利理论片_成年男人裸J照无遮挡无码_黄动漫视频_福利精品在线_日韩欧美中文字幕国产_最新亚洲精品国偷自产在线 | 高清精品一区二区三区_欧美一级做a爰片久久高潮_欧美成人视_亚洲同性同志一二三专区_人与野鲁交xxxⅹ网站_国产成人精品福利一区二区_最新日本中文字幕在线观看_国产精品综合不卡av 亚洲九九精品_国产不卡视频一区二区三区_久操视频免费看_热99久久精品_婷婷久久精品一区二区_日本免费人成在线观看_xxxx免费_国产成人一区二区三区在线视频 | mmmwww在线看片观看_欧美色欧美亚洲另类二区_国产高清成人_奇迹少女第5季正版中文_免费成人视屏_久久精品屋_国产在成人精品线拍偷自揄拍_欧美日韩视频 | 日批日韩在线观看_国产va免费精品观看精品老师_久久久久激情_性开放网交友网站_欧美一级做_亚洲VA欧美va国产va综合_欧美视频一_超碰人人超 | 137日本免费肉体摄影_伊人365_日韩欧美一区二区在线_无码中文字幕VA精品影院_亚洲AV福利无码无一区二区_深夜影院在线观看_被黑人猛男连续高潮视频_aa国产精品 | 最爱高潮全过程免费的视频_日韩免费无码不卡夜夜爽_国产乱子伦一区二区三区国色天香_日日操天天操_中文久久久久久_91欧美激情一区二区三区成人_男男做喘息gv奶白小受动图_国产三及片网站 狠狠搞综合_国产精品欧美亚洲制服_久久久性视频_国产调教性奴在线观看w_狠狠色婷婷久久一区二区三区麻豆_www.青青草_超碰在线资源站_草在线免费观看 | 狠狠色丁香婷婷综合橹88_国产精品入口传媒小说_午夜精品老牛av一区二区三区_www.日本精品_久久精选视频_精品国产综合二区亚洲_www天天干com_麻豆传媒在线免费看 | 亚洲日韩国产成网在线观看_69久久久_伊人久久精品无码麻豆一区_亚洲欧美日韩在线观看a三区_日本网站在线_av在线免费观看国产_最近免费中文字幕大全高清MV_性欧美长视频免费观看不卡 | 欧美中文在线观看_国产91精_无码国产69精品久久久久网站_中文在线a在线_毛片大全免费_免费观看色网站_农村一级毛片_意甲赛程2024赛程表最新 | 美女一二三区_香港日本三级在线播放_国产性―交一乱―色―情人_免费伦费一区二区三区四区_欧美亅性猛交内射_8mav在线_无遮挡边吃摸边吃奶边做_美女扒开屁股让男人桶 | 久久国产精品不只是精品66_国产精品扒开腿做爽爽爽_久久aⅴ乱码一区二区三区_欧洲熟妇色XXXXX欧美老妇伦_最近日韩中文字幕_国产精品久久久久乳精毛片毛斤_www日_jjzz18国产 | 亚洲AV无码国产精品色午友在线_欧美黄色一级视频_久久精品亚洲国产奇米99_亚洲欧美日韩影院_亚洲精品欧美综合网_国产美女的第一次好痛在线观看_大内密探零零性性在线观看_五月天色视频 | 欧美一区二区福利视频_国产av高潮社区_97国产香蕉_欧美日韩在线不卡_一本久草_久久精华液_成人免费午夜视频_国产99视频在线观看 | 91超碰刺激偷拍_国内精彩免费自拍视频在线观看网址_欧美内射深插日本少妇_97zyz成人免费视频_麻豆成人在线_欧美日韩精品久久免费_免费看黄色一级视频_91视频麻豆视频 | 91区在线_亚洲综色_一级做a免费视频观看网站_日韩av第一页在线播放_又黄又网站国产_中文字幕第一页久久_一区二区三区四区在线观看视频_一级中文字幕 | 久涩涩福利视频在线观看_国产福利高清_yw193国产成人精品_久久丝袜视频_欧美成年黄网站色视频_日日摸夜夜添欧美一区_亚洲一区二区免费看_免费永久看黄神器 | 欧美疯狂xxxxbbbb喷潮_亚洲成年人在线观看_男女啪啪a级毛片_国产中文1_91在线视频观看免费_欧美精品一_国产精品一区二区_中文字幕佐山爱一区二区免费 | 国产欧美亚洲一级激情在线观看_亚洲情视频_国产性猛交_国产又色又刺激高潮免费视频_在线亚洲天堂_久久精品人人做人人爽97_国产精品爽爽爽爽爽爽免费观看_中文字幕在线视频免费 |